Repeated High-Precision Gravity & GPS at Dixie Valley

P. Gettings¹, D.S. Chapman¹,
R. Allis²

¹University of Utah

²Utah Geological Survey

Outline

- Project introduction
- Gravity/GPS data collection method
- Gravity changes, Jun 1999 Jun 2000
- Elevation changes, Oct 1999 Jun 2000
- Gravity changes, Oct 1999 Jun 2000
- Gravity data analysis
 - (a) Dixie Valley, (b) The Geysers
- Conclusions

Project Introduction

• Goals:

- To improve the method and resolution of gravity & GPS measurements, including quantifying errors
- To use repeated gravity & GPS measurements to image reservoir fluid changes
- Dixie Valley chosen as the initial geothermal field site.

Introduction (con't)

- Three campaigns at Dixie Valley:
 - June 1999
 - October 1999
 - June 2000

 Each campaign occupied 60 stations around the field with gravity & GPS measurements

Station Network

Gravity/GPS Field Method

- Gravimeter: Scintrex CG-3M (1 μGal prec.)
- GPS: Trimble 4000SSe, antennas have ground planes
- Stations are rebar driven into the ground, with a 12" cement pad for the gravimeter
- Gravity measurements taken on the pad,
 GPS measured from the top of the rebar

Gravity Measurements

- Gravity measurements taken at least twice on each station; local base occupied at least twice daily.
- Occupations store 15+ minutes of 30 sec averages; time series analyzed with Thiele extrapolation

Time Series Analysis

GPS Measurements

- GPS measurements taken for 30 minutes on each station.
- Each station occupied once.
- Data analyzed using
 Trimble Geomatics
 Office in post-processed
 differential mode

Gravity/GPS Errors

- GPS positioning error estimated as
 ±3 cm vertical
- Gravity measurement error estimated at ±5 μGal
- Free-air corrected gravity measurement error estimated at ±15 μGal

Uncorrected Gravity Change Jun 1999 to Oct 1999

Elevation Change Oct 1999 to Jun 2000

Free-air Corrected Gravity Change Oct 1999 to Jun 2000

Uncorrected Gravity Change Oct 1999 to Jun 2000

Gravity Data Analysis

- Analysis of the gravity changes requires knowledge of both the production and ground water history of the field
- For Dixie Valley, production data have not yet been incorporated in the analysis.
- Such data have been used for our most recent work at The Geysers, CA

The Geysers Production History

Elevation Change The Geysers, Sep 2000 to Apr 2001

Gravity Change

The Geysers, Sep 2000 to Apr 2001

Predicted Gravity Effects The Geysers, Sep '00 to Apr '01

- 1-D Bouguer Slab: $\Delta G = 40 \Delta M / A$
 - Assume A = 40 km², Δ M in Mt, Δ G in μ Gal
- Net mass loss of 20.55 Mt \rightarrow -20 μ Gal
- Max/min mass changes:
 - $-42.68 \text{ Mt loss} \rightarrow -43 \mu\text{Gal signal}$
 - -22.13 Mt gain $\rightarrow +22$ μ Gal signal
- Ground water change
 - Estimate Δ Z = 1.8m → +15 μ Gal
 - Assume Φ =20%
- Observed average $\Delta G = -38 \mu Gal$

Conclusions

- Repeated gravity & GPS measurements have been performed at Dixie Valley.
- Elevation differences are large, with very short wavelength changes; possibly a systematic processing error.
- Uncorrected gravity differences show larger changes (>20 μ Gal) near production wells, less change near injection wells, and no significant change towards the center of the valley

Future Work

- Compare GPS data against InSAR, etc. to resolve the source of the apparent large changes
- Correlate gravity & GPS changes with production history
- Continue monitoring to improve understanding of the reservoir

Acknowledgements

- Dave Langton, Rob Harris, Andrew Henrikson, and Matt Cherney assisted with the data collection
- This project was funded by Department of Energy, Office of Geothermal & Wind